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Abstract—Eye movements play a significant role in human-
computer interaction and are widely recognized as an essential
health indicator, making their detection both appealing and
technically challenging. In this paper, we present a system
named USEE that achieves high-precision capture of weak and
aperiodic eye movements by utilizing fine-grained and ubiquitous
ultrasound signals, capturing both blinking and more subtle
saccades. We first identify signal changes associated with eye
movements by capturing the unique impact of blinking. Further,
we establish a pioneering relationship between the residuals from
signal decomposition and subtle eye movements. Utilizing inno-
vative signal processing architectures, we mitigate interference
and effectively extract eye movement features. Subsequently,
we employ one-dimensional convolutional operations in place
of signal cross-correlation, designing filters for motion category
identification and a lightweight convolutional neural network
for saccade direction classification. This enables our system to
serve as a foundational sensing layer for eye movement tracking,
applicable across diverse applications. We implement USEE on
both a research-purpose platform and a commodity Raspberry
Pi. Extensive experimental results demonstrate the effectiveness
of our system, achieving 91% accuracy in saccade recognition
and 94% in blink detection. The system proves robust, even
in challenging scenarios with strong interference, such as the
presence of moving pedestrians.

Index Terms—Wireless Sensing, Eye Movement Detecting

I. INTRODUCTION

”The soul, fortunately, has an interpreter – in the eye.” –
Charlotte Bronte

Often poetically referred to as the windows to the soul,
the eyes provide one of the most essential human senses
– vision. The study of eye movements has long been a
prominent topic for both academia and industry because
high-fidelity eye movement estimation is vitally important in
many scenarios, from assisting medical diagnosis to improving
interactive experience. In the aspect of medical assistance,
saccades, which are the rapid movements that sharply change
the point of view and the most frequently occurring eye
movements in humans, can serve as important indicators for
diagnosing Parkinson’s disease [1] and Alzheimer’s disease
[2]. Capturing eye movements, especially saccades, is crucial
for human-computer interaction, enabling applications like
user intention/status monitoring and Virtual Reality (VR) and
Mixed Reality (MR) interaction. Eye movements reveal user
attention, aiding in driver-state monitoring and productivity
through saccade detection and reading speed estimation, as
we discuss in Sec. IV-E. In VR/MR, eye movement is a

Please read the following instructions:
(1) ...................................................

(2) .......................

(3) ................................

Your reading speed is 10 line(s)/minute

Text

Gaze point

Speaker and microphone

Estimated reading speed

Fig. 1: USEE’s daily usage – reading speed estimation.

key interaction method, already used in Commercial-Off-The-
Shelf (COTS) products like Apple Vision Pro and Meta Quest
Pro.

Existing methods for capturing eye movements can be
roughly divided into three classes, specially-designed sensors,
device-based and device-free methods, where each has its own
drawbacks. Specially designed sensors, such as Electroocu-
lography (EOG) and infrared sensors, can accurately detect a
user’s eye movement. However, this specially designed wear-
able solution incurs high costs and is not comfortable enough
due to the extra power supply requirement [3]. In recent years,
wireless sensing has emerged as a prominent field, distin-
guished by its lightweight device requirements and efficient
recognition capabilities. Yet, research focusing on capturing
eye movements using wireless sensing remains limited. For
device-based sensing method, Smartlens [4] attaches dedicated
antenna circuits to the contact lens, as well as the RF tags, and
achieves eye movement direction recognition. However, this
contact lens-based approach still requires additional devices
and does not apply to individuals who do not use contact
lenses. For device-free sensing methods, BlinkListener [5] and
TwinkleTwinkle [6] employ ultrasonic signals in a contact-
free manner to recognize blinks, which is coarse-grained and
don’t fully reflect the user’s eye movement status, limiting
their practicality. Therefore, it naturally leads to the question:
Is there a method that combines the advantages of being non-
invasive and device-free while pushing the limits to achieve
accurate fine-grained eye movement detection?

In this work, we present USEE, a system that leverages ubiq-
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TABLE I: Comparison of blinking and saccade.

Distance (cm) 30 40 50 60

Ramp
2 2.47 3.03 2.19 2.30

Corsaccade
2 0.35 0.56 0.65 0.87

Corblink
2 0.11 0.14 0.21 0.30

SNR of blinks (dB) 17.63 13.14 7.52 5.4
SNR of saccades (dB) 7.58 5.35 3.33 1.66

uitous short-wavelength acoustic signals to accurately detect
fine-grained saccade movements. This non-invasive solution
can be seamlessly integrated into interactive devices (Fig. 1).
To achieve finer-grained, device-free saccade estimation, we
analyze the subtle changes induced by saccades and blinks
using our intricately designed, innovative signal processing
pipeline. Earlier methodologies [5], [6], which depended on
absolute amplitude or threshold-based methods, proved in-
adequate for detecting substantially smaller saccades. More-
over, we reveal the relationship between signal decomposition
residuals and subtle movements, enabling the detection of
extremely delicate saccades. The direction of saccades is
then further classified by a light-weight neural network. We
summarize the following challenges USEE must address to
achieve high-precision device-free eye movement detection:

• Locating the signal corresponding to the eye movements.
The received signal is a mix of reflections from various
objects at different distances, including interference from
mouth and head movements, along with the eyes. To
detect saccade patterns, we must determine the relative
position of the eyes to the receiver so that we can
identify signal changes resulting from eye movements
in the received signal. We leverage the characteristic
that saccades and blinks cause distinct signal changes to
address this challenge, as detailed in Sec. III-D1.

• Extracting the extremely fragile and aperiodic eye move-
ments. The saccade movement is considerably weaker
than a blink, with a tiny displacement of 1-2 mm [7].
From our real-world experiments (Table I)1, we observe
that the signal pattern caused by saccades is significantly
more subtle compared to that of blinks, as measured by
Signal-to-Noise Ratio (SNR) and three other metrics2.
Additionally, the signal changes induced by saccades are
less distinctive and more easily obscured by background
noise. To address this challenge, we introduce an inno-
vative approach that reveals the relationship between sig-
nal decomposition residuals and subtle eye movements,
providing a reliable indicator for detecting saccades and
blinks, as detailed in Sec. III-D3.

• Distinguishing between saccades and blinks. After ex-
tracting signals related to eye movements, we obtain
residuals that include both saccades and blinks. However,

1The experiment setup is similar as in Sec. IV-A, data was collected at
10 cm intervals within a distance range of 30∼60 cm.

2The ratio of signal amplitude changes induced by blinks and saccades
(Ramp). The correlation coefficients, Corblink and Corsaccade, are the
correlation between the power spectra of eye movements and those of noise
to measure the relationship between eye movements and noise.

the limited information within these residuals makes
it challenging to differentiate between the two actions.
Commencing from the distinct nature of saccades and
blinks, we aim to design a filter to differentiate between
them. We observe that one-dimensional convolution op-
erations incorporate a correlation operator, aligning well
with our approach. Thus, we achieve this goal through a
one-dimensional convolutional neural network (CNN), as
detailed in Sec. III-D4.

In summary, the main contributions of our work are as follows.
(1) To the best of our knowledge, USEE is the first device-

free deployed system employing acoustic signals for fine-
grained eye movement capturing and saccade direction
classification with high accuracy and reliability.

(2) We present a comprehensive signal processing pipeline
for extracting eye movement features. Specifically, we
uncover the relationship between the residuals from the
signal decomposition method (as opposed to the decom-
position results themselves) and subtle eye movements,
enabling effective extraction of the signals associated
with eye movements.

(3) We implement the USEE on both a research-focused
hardware platform as well as on a widely used consumer
device, the Raspberry Pi. Extensive experiments validate
its reliability and accuracy.

II. RELATED WORK

A. Traditional Eye Movement Detection Methods

1) EOG sensor-based: EOG sensors measure biopotential
signals induced by changes in the cornea-retina dipole charac-
teristics during eye movement. These sensors have been widely
explored for eye blink detection and eye movement tracking
over decades [8], [9]. Existing EOG-based solutions usually
use glasses as the sensor carrier, where EOG sensors and PCB
are attached to the custom material frame [3]. Commercial
EOG glasses, such as JINS MEME glasses [10], alleviate
the discomfort of capturing signals to some extent. However,
the customized hardware comes with an additional price tag
and has to cope with energy-hungry computations. Conversely,
acoustic or camera-based solutions can be deployed on com-
mercial devices without additional hardware.

2) Infrared-based: Nowadays, infrared sensors have been
integrated within commercial glasses or headsets for eye
tracking, as in Apple Vision Pro [11]. Despite the advantages
of infrared light sensors, such as smaller size and lower energy
consumption, the potential safety hazard of exposing the eye
to infrared light remains a concern [12], [13]. The comfort
of wearing the head-mounted devices is also an important
factor, and prolonged wearing tends to cause cervical spine
fatigue [14]. Our approach eliminates the need to wear any
additional equipment, and since the volume of the sound waves
we employ is well below safe exposure limits [15], there are
no safety concerns even for protracted usage.

3) Camera-based: Camera-based solutions have been
widely applied in eye movement detection systems [16].
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Typical capturing procedure involves first recognizing face
landmarks from the image, cropping image segments contain-
ing the eyes, and then tracking eye movements using back-end
algorithms [17]. Such a processing pipeline relies on a clear
and unobstructed view of the face [17], therefore the tracking
accuracy of the existing vision-based methods decreases in the
case of wearing a mask [18]. Moreover, vision-based methods
tend to be computationally intensive and have privacy concerns
[19]. In contrast, our scheme does not require the face to be
completely unobstructed, nor does it have any requirement for
ambient light.

B. Acoustic-based Eye Movement Detection Methods

Several recent works focus on sensing blinks using acoustic
signals. BlinkListener [5] utilizes FMCW ultrasonic signals for
blink detection, employing an innovative approach based on
frequency bin processing. It observes signal amplitude varia-
tions caused by changes in reflective materials and proposes
an optimal viewing angle to maximize the amplitude changes
induced by blinks, effectively distinguishing them from back-
ground interference. Another innovative work, TwinkleTwin-
kle [6], constructs an HCI system using FMCW signals to
interact with the blinking pattern. It mitigates interference
through phase difference and distinguishes various user blink
habits using adaptive thresholds. Combining a vote-based
method, it maps the blink pattern to symbols like ASCII for in-
teraction. However, our research deviates from the above work
by concentrating on the detection of saccades, eye movements
that are more subtle than blinking. GazeTrak [20] employs
four microphones and one speaker attached to each side of
the glasses for high-precision and high-sensitivity monitoring
of eye movements. In contrast, our study focuses on device-
free eye movement tracking, eliminating the need for wearable
devices. We achieve precise eye movement monitoring using
only one microphone and one omnidirectional speaker.

III. ACOUSTIC SENSING SYSTEM FOR EYE MOVEMENTS

In this section, we first introduce the typical forms of
eye movements, with saccades being the most frequent eye
movement. We then provide a detailed description of the
design of each component in USEE.

A. Background

Typically, three types of voluntary eye movements are con-
sidered primary: saccades, pursuit movements, and vergence
movements. Saccades are rapid conjugate eye movements
where eyes moves from the center to the left or the right
(Fig. 2(a)). Pursuit movements are much slower, smoother con-
jugate tracking movements of the eyes (Fig. 2(b)). Vergence
movements are disconjugate, where two eyes move in opposite
directions (Fig. 2(c)). They typically occur when tracking a
target from a distance to close range or vice versa. Of the three
forms of movement above, saccades are the most frequent eye
movement in daily life [21]. In addition to those subtle eye
motions, blinking is a much more drastic action of the eyelid
and eyeball muscles to clean and refresh our eyes. Therefore,

(a) Saccade. (b) Pursuit. (c) Vergence.

Fig. 2: Forms of eye movements.
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Fig. 3: Overview design of the USEE.

given the frequent occurrence of saccades and the significance
of blinks, USEE primarily captures saccades and blinks.

B. System Overview

Our system comprises two main components: the signal
processing module and the eye movement detection module, as
shown in Fig. 3. The signal processing module handles ultra-
sound signal modulation, demodulation, and Channel Impulse
Response (CIR) computation. The eye movement detection
module mitigates the interference in the raw CIR, extracts
the eye movement patterns and classifies the eye movement
types. For the interference in the raw CIR, USEE addresses
three types of interference: exterior, interior, and inherent
(please refer to Sec. III-D and Fig. 5 for definition). We first
use blinking’s unique impact on signal amplitude to identify
the reflective distance related to eye movements, mitigating
interference from mouth movements to eliminate exterior and
interior interferences. After isolating eye movement-related
reflections, we apply Variational Mode Decomposition (VMD)
to minimize inherent interference. For the movement types
classification, recognizing the non-periodic, impulse-like na-
ture of eye movement reflections as beneficial, we leverage the
correlation between signal decomposition residuals and subtle
eye movements, extracting features from these residuals, as
the classification features. These features are then input into a
one-dimensional convolutional filter for motion classification.
To further identify the saccades directions, we design a con-
volutional neural network based on CIR to enhance saccade
recognition, differentiating between left and right saccades.
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Fig. 4: Viewing eye movements in the I-Q vector space.

Exterior interference Interior interference

Inherent interference

Fig. 5: Different interferences when capturing eye movement.

C. Signal Processing Module

1) Signal Modulation: To balance signal energy and
achieve path separation, USEE transmits periodic high-energy
signals and leverages the autocorrelation properties of ZC
sequences for modulation in the frequency domain. The base-
band signal is shifted to the desired frequency using a high-
frequency carrier, creating a real modulated signal through
conjugate symmetry. The final time-domain signal is obtained
via IFFT.

2) Signal Demodulation and CIR Acquisition: Upon receiv-
ing the signal, the microphone segments it into frames, per-
forms FFT and matches the baseband frequency components.
The conjugate of the modulation sequence is multiplied by the
received signal in the frequency domain, and IFFT is applied
to acquire the time-domain CIR [22], [23].

D. Eye Movement Detection Module

We categorize interferences encountered during eye move-
ment recognition into three types: exterior, interior, and inher-
ent, as shown in Fig. 5. Our eye movement detection module
incorporates methods to address each type.

1) Exterior interference: Exterior interference refers to
reflections from surrounding objects, both static (like tabletop
ornaments) and moving (like passing individuals).

Solution. CIR measurements provide information on prop-
agation path length and reflected signal strength, forming a 2D
CIR map like Fig. 6. The horizontal axis in the map denotes
time ranges, while the vertical axis denotes distance ranges.
The time-domain resolution of 0.025 s in the CIR map ensures
a 40 Hz sampling rate, which is sufficient for capturing the
subtle movement of the eye3. In frequency domain, acoustic
signal with a 6 kHz bandwidth can distinguish objects over
5.7 cm apart. The 2D CIR clearly shows how the signal

3Table. III provides the detailed parameters of the signals.
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changes with time at different distances, which makes it sim-
ple to remove exterior interference by filtering long-distance
reflections.

2) Interior interference: After eliminating exterior interfer-
ence, we focus on locating eye-related signals and mitigating
potential interior interference. Interior interference refers to re-
flections from other regions within the human body, excluding
external factors. These can originate from the torso, such as
thoracic cavity fluctuations during respiration, or from nearby
facial features, like mouth movements during speech.

Solution. The CIR contains signal variations related to eye
movements, and locating and isolating these signal patterns is
vital for detection yet challenging. Fig. 4 shows how blinking
manifests as changes in signal amplitude and phase in the I-Q
vector space. Compared to the saccade, which is caused by
corneal movement and has a relatively small change in path,
a blink not only causes a change in the distance of the signal
propagation path, but also causes a change in the reflective
material, resulting in a more significant change in both the
signal’s amplitude and phase. Considering that blinks and
saccades occur in the same location and are mutually exclusive
as the eyes can perform only one action at a time. Therefore,
the unique characteristic of blinking could serve as a crucial
indicator for locating signals related to eye movements in
the 2D CIR. To highlight signal changes from blinking, we
use differentiated CIR (dCIR) to remove static components.
This allows detection based on dCIR’s absolute amplitude,
helping to determine the relative distance between the eyes and
the receiver and capture key eye movement signal patterns.
The 2D CIR’s distance information allows for eliminating
interference from distant torso activities. However, interfer-
ence from nearby sources, like mouth movements, remaining
unaddressed. The distance between the human mouth and eyes
is approximately 6.5 cm [24], which is close to the limit
of ultrasound signal resolution. As a result, current methods
often passively remove interference from mouth movements
by discarding potentially corrupted frames [5]. This approach
undoubtedly results in the loss of information related to eye
movements in the signal.

We design a multi-bin re-combination approach to mitigate
the interference of mouth movements on eye movement recog-
nition based on our observation of eye movement patterns.
Denote the signal pattern induced by eye movements as se
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TABLE II: Frequencies and displacements for different move-
ments.

Motions Intervals / Frequency Displacement

Eye movements (Saccade) Aperiodic, interval: 0.3–2 s [25] 1–2 mm
Eye movements (Blinking) Aperiodic, interval: 3–4 s [26] Millimeter level

Head motions (BCG) 1–1.5 Hz [27] Millimeter level
Head motions (Torso-induced) 0.2–2 Hz [28] Subcentimeter level
Head motions (Natural status) 0.4–3.5 Hz [29] Centimeter level

and the signal pattern induced by mouth movements as sm.
At the bin corresponding to the distance of the eyes, the
combined signal is approximately the weighted sum of the
two patterns, Seye = we × se + wm × sm, where we and
wm are the weight for eye and mouth movement patterns.
Similarly, at the bin corresponding to the distance of the
mouth, the combined signal pattern can be expressed as
Smouth = w′

e × se + w′
m × sm. Usually, the reflection

signal strength of the mouth dominates the inference from
eye movements at the bin corresponding to the distance of the
mouth, given the close distance and sizes. Hence by assuming
that w′

m ≫ w′
e, we have Smouth ≈ w′

m × sm. Therefore, we
use the least squares method to extract the eye movement by
minimizing the impact of mouth movements, i.e., estimating
a parameter θ that satisfies argminθ (Seye − θ × Smouth).

However, due to the aperiodical nature of eye movements
and mouth movements, we need to perform such estimation on
short time windows to compensate for head movements that
may change the distance between the mouth and the eyes. We
chose a window size of 20 frames (0.5 s in time) as the length
of the dCIR processing based on experimental results.

3) Inherent interference: Eye movements generate tiny
reflected signal patterns that are fragile and highly sensitive to
interference from other movements. Even minor motions can
significantly reduce the effectiveness of eye movement capture.
Involuntary movements, such as natural head swaying and
torso-driven displacements during respiration, persist through-
out the eye-tracking process. We refer to these as inherent
interference. The primary source of inherent interference is
the unconscious displacement of the head, driven by torso
motion during respiration, with millimeter-level displacements
at the respiratory rate. Additionally, the pulsatile effects of
the heart, known as Ballistocardiography (BCG) [30], cause
similar head displacements during each cardiac cycle. Natural
micro-movements of the head during eye movement also
contribute, with sub-centimeter displacements at frequencies
below 3 Hz [31]. Table II summarizes the displacement am-
plitudes and motion frequencies for both inherent interference
and eye movements.

Solution. Eye movements are extremely subtle compared
to some inherent interference, e.g. natural head movements
causing displacements that are orders of magnitude larger.
This results in a mixed representation of eye movement signal
in the I-Q vector space, as shown in Fig. 7. Moreover, the
overlapping frequencies of the four signal components make
it nearly impossible to isolate them using a simple band-pass
filter. Therefore, a more sophisticated method is required to

separate these signal components effectively.
The aperiodic nature of eye movements inherently limits

the ability to extract meaningful information directly from the
frequency domain. Signal decomposition methods aim to sepa-
rate mixed signals into components with different bandwidths.
Traditional methods, such as EEMD [32] and CEEMDAN
[33], extract signal components (IMFs) from high to low fre-
quencies through a sifting process based on the original signal.
However, they often group eye movement signals with high-
frequency noise into the same component, making it difficult to
effectively isolate eye movement information from the IMFs.
Recent methods like VMD [34] address this by optimizing the
reconstruction of the original signal from components while
imposing constraints on center frequency and bandwidth.
Despite these advancements, these methods still struggle to
extract high-SNR information related to eye movements from
the decomposition results. The limitations are illustrated on the
left of Fig. 8, which shows the components obtained through
the three decomposition methods mentioned. Since the highest
frequency component most effectively captures eye movement
information, we focus on illustrating this specific component.
The decomposition results show a mixture of signal fluctua-
tions from both eye movements and noise, leading to indistinct
features and time misalignment, which complicates the overall
interpretation. However, this does not mean that extracting
signals related to eye movements is impossible. Let us take a
different perspective. Given that eye movements are brief and
resemble impulse signals, their frequency components span the
entire frequency domain, which precludes the possibility of
complete decomposition. We now define the residual of signal
decomposition as follows to examine this non-decomposable
portion:

R(t) = f(t)−
K∑
i

IMFi, (1)

where K represents the maximum value of the subscript for
IMFs. Eq. (1) implies that the residual is defined as the result
obtained by subtracting all IMF components from the original
signal. This component precisely represents the portion of
the signal that cannot be decomposed, corresponding to the
high-frequency and high-energy components of the original
signal [34], aligning with the frequency-domain and energy
characteristics of eye movements. The right of Fig. 8 illus-
trates the residuals obtained from three signal decomposition
methods. Notably, in the VMD residual, signals related to
eye movements stand out distinctly from background noise.
The characteristics of eye movements are clearly highlighted,
demonstrating a clear separation between these signals and
the surrounding noise. This is due to the computational char-
acteristics of the VMD method itself. In contrast, the other
two methods, which aim to fully recover the original signal,
mix eye movement signals into high-frequency components,
rendering the residuals ineffective in accurately depicting eye
movement signals. Thus, we establish a connection between
signal decomposition residuals and subtle eye movements,

2024 21st Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

277



E
E
M
D

V
M
D

Time(s) Time(s)

C
E
E
M
D
A
N

O
rig
in

IMF-1 Residual

Saccade Blinking

Fig. 8: The IMF-1 and residual of different signal decomposing
methods.

successfully extracting eye movement characteristics from the
underlying signal.

4) Distinguishing saccade and blinking: Although the
VMD residual effectively reduces interference and highlights
eye movement signals, distinguishing between saccades and
blinking remains a challenge. We attempt to use linear clas-
sification methods based on thresholds, a common approach
in other systems. However, experimental results show limited
effectiveness in differentiating these two actions. The accuracy
of CFAR for saccades reached only 44%, while for blinking
it was 53%. Despite this, we observe differences in action
duration and energy intensity in the reflection patterns of
saccades and blinking. Our approach involves training a se-
ries of filters to make them responsive to one action while
rejecting the other, a computation process resembling signal
cross-correlation. The one-dimensional convolution operation
(conv1D) in neural networks closely resembles the afore-
mentioned cross-correlation computational process. When pro-
vided with a signal of length L and Cin channels, the ith

output channel of one-dimensional convolution is calculated
as: outi =

∑Cin

j=1 weighti,j ∗ inj , here, ∗ denotes the cross-
correlation operator. The shape of the outcome is (Cout, Lout),
where Lout = Lin−window size+1. We determine the win-
dow size based on the duration of eye movements and the sig-
nal’s time resolution. By incorporating cross-correlation within
the one-dimensional convolution, filter design is effectively
transformed into training a simple neural network model. We
use the cross-entropy function as the loss function to train the
network. Detailed model parameters and experimental results
are discussed in Sec. IV.

5) Saccade direction classification: After obtaining sac-
cades, we aim to refine the recognition granularity further.
Compared to CIR, the information contained in the residuals
is insufficient for further differentiation. Therefore, we use
CIR as the input data and design a convolutional neural
network model, widely used in the field of ultrasound action
classification [35], to classify saccades into left and right
directions. Specifically, upon detecting a saccade, we segment
the CIR of the single signal related to the eyes by selecting
the preceding and following 10 distance bins within the
action period. This results in a two-dimensional matrix data

TABLE III: Parameters of sending signals on two platforms.

Parameters NI USB-6356 Raspberry Pi 4B

Sample frequency 96 kHz 48 kHz
Center frequency 38 kHz 19 kHz

Frame length 2400 1200
Bandwidth 6 kHz 6 kHz

with the shape of 20 × window size. We then input this
matrix into a lightweight neural network model with two two-
dimensional convolutional layers for direction classification.
Experimental results confirm that this approach achieves a high
level of accuracy. Detailed experimental results are provided
in Sec. IV.

IV. EVALUATION

A. Implementation

We implement USEE on both the research-oriented NI USB-
6356 and the consumer-grade Raspberry Pi 4B [36], as shown
in Fig. 9. Both platforms use a single-transmitter, single-
receiver setup, with the microphone placed approximately
2–3 cm away from the speaker. For the Raspberry Pi, the
Respeaker 4-mic linear array is used, but only one channel
serves as the input.

The NI platform is used as the benchmark for its flexi-
bility in exploring experimental configurations, allowing us
to investigate various potential applications of USEE, such
as integration in eyeglasses, and demonstrate deployment
possibilities in embedded wearable devices like VR headsets.
Table. III provides the detailed parameters of the signals.

The signal processing is performed on a laptop with an
AMD Ryzen 5600H CPU and 16GB of RAM using MATLAB.
The digital filter and saccade direction classification model
training is developed using Python and PyTorch. In the neural
network filter model, the kernel size (window size) of the 1D
convolution layer is set to 19, which can cover the temporal
span of both saccade and blink actions. In the enhanced
saccade direction classification model, the number of 2D con-
volution layers is set to 2, and the kernel size for each is 3. For
the NI platform, the training dataset comprises approximately
1,600 instances of blinks and 1,100 instances of saccades,
while the Raspberry Pi platform’s independent training dataset
includes about 1,300 blinks and 1,000 saccades. For the
overall performance evaluation, the ratio of the training set,
the validate set, and the test set is 8:1:1. The test dataset used
in the subsequent impact factor experiments is independent
and not included in the above data set. Ground truth of eye
movement is obtained through manual labeling using video
streams captured by a camera fixed at the top of the tripod.

B. Experiment Setup

We recruited eight participants when collecting the evalua-
tion data set, each with diverse backgrounds and eye move-
ment habits. Each sample of the data set contains 10 seconds
of eye movement signals. Participants independently decided
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on the eye movements in each data sample, typically including
3−6 saccades with 1−3 blinks. Our data set is collected
in normal lab environments, with tables and chairs placed
around the test site. Unless otherwise specified, the sensing
unit is placed at the same height as the participants’ eyes
as shown in Fig. 9(b). For the mouth mitigation experiment,
participants are required to count from 1 to 100 at their
usual conversational speed and volume, with the sound level
typically maintained within the range of 60∼70 dB.

C. Overall Performance

We employ a detailed accuracy measure by determining
if each temporal frame correctly detects eye movements. On
the NI platform, USEE achieves 91% accuracy for saccade
recognition and 94% for blink recognition. The confusion
matrix in Fig. 10(b) shows that errors mainly occur when
saccades and blinks are confused. When considering only
the presence of eye movement, the accuracy rises to 96%.
On the Raspberry Pi platform, USEE achieves 90% accuracy
for saccades and 93% for blinks, proving its feasibility on
consumer devices. Additionally, the system achieves 92%
accuracy for classifying saccade directions (left and right).

We benchmark USEE against BlinkListener and Twin-
kleTwinkle, two leading ultrasound-based blink detection sys-
tems. USEE matches BlinkListener’s blink recognition ac-
curacy on both platforms and outperforms TwinkleTwinkle.
Notably, USEE also accurately detects saccades, a capability
not present in the other systems.

In the presence of sustained mouth movements, the un-
processed data results in low recognition accuracies, with
only 28% for saccades and 36% for blinks after processing.
However, after applying our interference mitigation method
and subsequent processing, the recognition accuracies signif-
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Fig. 11: Different relative positions of the sensing setup.

icantly improved to 41% for saccades and 62% for blinks,
demonstrating the effectiveness of our proposed approach.

D. Impact Factors

We assess USEE’s performance under varying relative po-
sitions, as shown in Fig. 11. Distances, heights, angles, and
orientations are adjusted at consistent intervals, with the eye-
facing direction set to 0 in the directional symmetry experi-
ment.

1) Distance: As shown in Fig. 12(a), our system achieves
91% accuracy for saccades and 94% for blinks at 30 cm. Even
at 70 cm, accuracy remains around 80%, which aligns with
recommended interaction distances for electronic devices [37].
On a Raspberry Pi, sensing accuracy reaches 86% for saccades
and 88% for blinks. The lower accuracy is due to reduced
SNR as distance increases. Future research with directional or
high-power transmitters could further enhance accuracy.

2) Height: As shown in Fig. 12(b), raising the device by
5 cm improves accuracy to 91% for saccades and 95% for
blinks by reducing interference from lower body reflections.
However, placing the device too high weakens the signals from
eye movements, reducing recognition performance. Lowering
the device by 10 cm increases interference, decreasing accu-
racy to 76% for saccades and 80% for blinks.

3) Angle: We can observe from Fig. 12(c) that the system
maintains accuracy within an acceptable range even when the
bias is within 30 degrees, reaching 84% accuracy for saccades
and 81% accuracy for blinks. As the bias angle increases,
performance further deteriorates, mainly due to the reduction
of eye movement information in the received signal.

4) Orientation: As shown in Fig. 12(d), adjusting the de-
vice orientation upward has a minimal impact on performance.
A 15-degree increase achieves 90% accuracy for saccades and
92% for blinks, while a 15-degree decrease has a similar effect
as a 30-degree upward adjustment. Lowering the orientation by
30 degrees reduces accuracy to 81% for saccades and 82% for
blinks due to increased interference from other facial regions.

5) Different Type of Exterior Interference: As shown in
Fig. 13(a), we conducted three experiments to simulate real-
world interference: (i) An interfering user walking 40 cm to
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Fig. 12: Experiment results of different relative positions.

the left of the participant; (ii) An interfering user walking
80 cm behind the participant; (iii) Background music increas-
ing noise from 50 dB to 70 dB.

Fig. 13(b) shows that when the interfering user is active at
at 80 cm, accuracy reaches 84% for saccades and 91% for
blinks, indicating USEE effectively filters distant interference.
However, at 40 cm, accuracy drops to 75% for saccades and
81% for blinks. Background noise has a negligible impact,
demonstrating the system’s ability to remove static compo-
nents effectively.

6) Eyeglasses: We conduct experiments to explore the im-
pact of wearing eyeglasses, including both nearsighted glasses
and sunglasses, on the performance of USEE. The setup is
shown in Fig. 14. The sensing unit is positioned directly in
front of the participant’s eyes at a distance of 10-15 cm,
with each configuration repeated 10 times. When participants
wear sunglasses, the average recognition accuracy is 82% for
saccades and 84% for blinks. The relatively high accuracy
is due to the sufficient transmission of ultrasonic signals
through the gap between the lenses, demonstrating USEE’s
operational advantage over camera-based systems when users
wear sunglasses. However, when participants wore nearsighted
glasses, the accuracy decreased to 79% for saccades and
81% for blinks. The decline in accuracy is attributed to the
attenuation of ultrasonic signal energy caused by the thicker
lenses and the narrower gap between them, which limits
signal propagation. To improve performance and evaluate the
feasibility of integrating USEE into head-mounted devices, we
affix the sensing unit to two types of eyeglasses, as shown
at the top of Fig. 14. In this setup, the recognition accuracy
significantly improved, reaching 88% for saccades and 90%
for blinks. These results suggest the potential for USEE to be
integrated as an intermediary layer in wearable devices.

E. Case Study

We further deployed USEE on the Raspberry Pi platform
to demonstrate its potential as a real-life application in this
context, i.e., using USEE to estimate reading speed which is
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crucial in various human-computer interaction scenarios and
also serves as a significant indicator of brain health [38]. We
recruit two users to read the English text consisting of three to
seven lines, with each line containing 14 to 18 words. Note that
a saccade occurs when the user changes lines while reading,
which serves as the basis for counting the number of reading
lines. The Raspberry Pi platform is deployed above the display
screen at a horizontal distance of 30 cm from the users’ eyes
and positioned vertically 5 cm above their eyes.

Two metrics are used to evaluate the experimental results:
(1) The Mean Absolute Error (MAE) between the estimated
and actual number of reading lines, which is used to evaluate
the system’s absolute accuracy; (2) The ratio of the MAE to
the actual number of lines read by the user, employed to assess
the system’s stability. The results from Fig. 15 reveal that
the MAE increases as the number of specified reading lines
increases because the frequency of eye movements increases
as the viewing content expands. When three lines of text are
assigned, the MAE is 0.54 lines, and when it increases to
seven lines, the MAE rises to 1.36 lines. Nevertheless, the
average deviation rate of USEE remained relatively stable,
staying around 18%, despite the increase in the actual number
of lines. These observations validate the system’s stability and
demonstrate its potential for real-world applications.

V. CONCLUSION

We propose a method using ultrasound to detect extremely
subtle eye movements with a single transceiver, including
saccades and blinks, on both a research-purpose platform and a
commodity Raspberry Pi. We model various interferences that
occur during eye movement, and we design innovative signal
processing methods to extract minute eye movement signals
even in the presence of strong interference. Comprehensive
experiments validate the effectiveness of USEE. We believe
that USEE will introduce a new idea for instantaneous subtle

2024 21st Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

280



motion signals, offering new possibilities for detecting eye
movements in various human-computer interaction scenarios.
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